Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Luminescence ; 39(3): e4701, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38441275

RESUMEN

In the present work, a novel n-UV convertible colour-tunable emitting phosphor was obtained based on the efficient Ce3+ -Tb3+ energy transfer in the Y10 Al2 Si3 O18 N4 host. By properly controlling the ratio of Ce3+ /Tb3+ , the colour hue of the obtained powder covered the blue and green regions, under excitation of 365 nm. The steady-state and dynamic-state luminescence measurement was performed to shed light on the related mechanism, which was justified by the electronic dipole-quadrupole dominating the related energy transfer process. Preliminary studies showed that Y10 Al2 Si3 O18 N4 :Ce3+ ,Tb3+ can be promising as an inorganic phosphor for white LED applications.


Asunto(s)
Electrónica , Color , Transferencia de Energía
2.
Carbohydr Polym ; 330: 121830, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368109

RESUMEN

The surface chemical composition of materials is essential for regulating their charge trapping and storage capabilities, which directly affect their electret performance. Although chemical modification of materials to alter electret performance has been investigated, the mechanism through which electret properties are regulated more systematically via chemical customization has not been elucidated in detail. Herein, p-phenylenediamine, benzidine and 4,4'-diaminotriphenyl, which have different conjugated strength functional groups, were selected to chemically tailor the surface of bamboo pulp fibers to regulate the electret properties and elucidate the regulatory mechanism more systematically. The results showed that the charge trapping and storage properties of materials could be regulated by introducing functional groups with different conjugated strengths to their surfaces, realizing the regulation of the electret properties. Moreover, the charge trapping and storage ability could be tailored more specifically by regulating the number of functional groups. By chemical customization to provide electrostatic effects to the materials, the purification time was reduced by approximately 45 %-52 %. More importantly, a relatively systematic mechanism was proposed to elucidate the effect of the conjugate group strength on the charge trapping and charge storage properties of the material. These findings will provide guidance for the investigation of chemical modifications to regulate the electret performance of materials.

3.
Nanotechnology ; 32(36)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-33836518

RESUMEN

An electrochemical catalyst with efficient, stable, inexpensive energy storage for oxygen evolution and hydrogen evolution has raised global concerns on energy, calling for high-performance materials for effective treatments. In this paper, novel amorphous polymetallic doped CeO2particles were prepared for an electrochemical catalyst via homogeneous phase precipitation at room temperature. Metal ions can be easily embedded into the oxygen vacancies formed by CeO2, and the the electron transport capacity of the CeO2/NiFeCo electrocatalyst is improved owing to the increase in active sites. In addition, the amorphous CeO2/NiFeCo composite material is in a metastable state and will transform into different active states in a reducing or oxidizing environment. Furthermore, the amorphous material drives oxygen evolution reaction (OER) through the lattice oxygen oxidation mechanism (LOM), while LOM can effectively bypass the adsorption of strongly related intermediates in the adsorbate release mechanism, thus promoting OER procedure in a timely manner. As a result, CeO2/NiFeCo exhibits a lower oxygen evolution overpotential of 260 mV at 10 mA cm-2current density, which shows a predatorily competitive advantage compared with commercially available RuO2and the reported catalysts.

4.
Small ; 15(16): e1805435, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30941892

RESUMEN

A class of 2D layered materials exhibits substantial potential for high-performance electrocatalysts due to high specific surface area, tunable electronic properties, and open 2D channels for fast ion transport. However, liquid-phase exfoliation always utilizes organic solvents that are harmful to the environment, and the active sites are limited to edge sites. Here, an environmentally friendly exfoliator in aqueous solution is presented without utilizing any toxic or hazardous substance and active site self-assembly on the inert base of 2D materials. Benefiting from thin 2D/2D heterostructure and strong interfacial coupling, the resultant highly disordered amorphous NiFe/2D materials (Ti3C2 MXene, graphene and MoS2 ) thin nanosheets exhibit extraordinary electrocatalytic performance toward oxygen evolution reaction (OER) in alkaline media. DFT results further verify the experimental results. The study emphasizes a viable idea to probe efficient electrocatalysts by means of the synergistic effect of environmentally friendly exfoliator in aqueous solution and active site self-assembly on the inert base of 2D materials which forms the unique thin 2D/2D heterostructure in-suit. This new type of heterostructure opens up a novel avenue for the rational design of highly efficient 2D materials for electrocatalysis.

5.
Int J Pharm ; 371(1-2): 82-8, 2009 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-19138732

RESUMEN

The diffusion mechanism of vitamin B12 in two types of crosslinked hydrogels, poly(acrylic acid) (cPAA) and copolymers of acrylic acid and N-vinyl pyrrolidinone (cP(AA-NVP)) was studied. The PAA and P(AA-NVP) synthesized by three different degrees of crosslinking have limited water absorption capabilities ranging from 3% to 18%. In the copolymers permeability of B12 is controlled by both intramolecular and intermolecular hydrogen-bonding between the pyrrolidinone and carboxylic acid side chains. The diffusion kinetic data in two types of polymers were best described by Peppas models instead of Higuchi models. Permeation from both crosslinked PAA and P(AA-co-NVP) copolymers followed a Super Case II transport mechanism, most likely driven by macromolecular chain relaxation and swelling of hydrophilic polymers. A special FTIR spectroscopic method for drug binding study, FTIR difference spectroscopy, is used to probe the strong interactions between vitamin B12 and the side chains of the hydrogels. The FTIR differential spectra of B12 in PAA hydrogels revealed dramatic changes of the spectral marker bands of B12 after binding in the crosslinked gels, indicating significant interactions occurring in the amide and phosphate moieties of B12. Such interactions retard the diffusion of vitamin B12.


Asunto(s)
Resinas Acrílicas/química , Reactivos de Enlaces Cruzados/química , Portadores de Fármacos/química , Composición de Medicamentos , Polivinilos/química , Pirrolidinonas/química , Vitamina B 12/química , Hidrogeles , Enlace de Hidrógeno , Cinética , Modelos Químicos , Estructura Molecular , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Vitamina B 12/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...